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ABSTRACT 
The objective of this study is to conduct a numerical investigation of turbulent natural convection in a 3-D cavity 

using Finite Volume Method and Staggered Grid. The statistical-averaging process of the mass, momentum and 

energy governing  equations  introduces unknown turbulent correlations into the mean flow equations which 

represent the turbulent transport of momentum, heat and mass, namely Reynolds stress (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) and heat flux (𝑢𝑖𝜃̅̅ ̅̅ ), 

which are modelled using k-ω SST model. The Reynolds-Averaged Navier-stokes (RANS), energy and k-ω SST 

turbulent equations are first non-dimensionalized and the resulting equations are discretized using Finite Volume 

Method. The results showed an efficient and cost effective procedure for solving a turbulent natural convection 

problem was by use of an optimized staggered grid and the flow domain discretized by use of Finite Volume 

Method 

 

KEYWORDS: Turbulence natural Convention, Staggered grid, k-ω SST, Finite Volume method. 

 

I. INTRODUCTION 
In fluid dynamics, turbulence is a flow regime characterized by chaotic and stochastic changes. This includes low 

momentum diffusion, high momentum convection and rapid variation of pressure and velocity in space and time.    

Finite Volume Method is among the most powerful means of solving different engineering problems in fluid 

dynamics. The physical domain is divided by cells to form a numerical mesh, which can be unstructured in 

turbulence modelling. The flow field variables are evaluated in some discrete points on each cell and are 

interpreted as average value over the finite volumes. The conservation laws are then applied to the finite volumes 

to obtain the discrete equations.  

 

II. MATHEMATICAL FORMULATION 
In this thesis, a numerical investigation of turbulent natural convection within a 3-D is conducted using the 

staggered grid and the finite volume method. The geometry is illustrated in figure 3.1. It consists of a hot surface, 

located on the left side of the rectangular cavity wall, and a cold surface on the right side. The enclosure is heated 

on the hot wall (Red color) and cooled on the cold wall (blue color). The measurement of Ampofo and Karyiannis 

(2003) were used. The hot and cold walls of the cavity were isothermal at 323±0.15K and 283±0.15K 

respectively, giving a Reyleigh number of 1.58 × 109. Each of the remaining walls are adiabatic. All boundaries 

of the enclosure are stationary, non-slip, rigid and impermeable.  

 

The walls measures 0.75m by 0.75m wide by 1.5m and the following the boundary conditions are applied;  

 The choice of the non-dimensional Θ temperature was such that  0 ≤ Θ ≤ 1. 

 The Dirchlet boundary conditions apply on the heater and the window, while the Neumann boundary 

condition applies on the adiabatic walls. 

 No slip boundary condition is used at the solid wall boundary of the 3-D enclosure. 

 Free slip boundary holds for the component of velocity normal to the impermeable wall surfaces.  

 

The initial pressure correction value 𝑝′ at the rigid and stationary wall boundary is zero. Initially, the fluid is 

motionless the temperature of which is equal to the average temperature of the vertical walls.  

http://www.ijesrt.com/
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stochastic
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Fig. 2.1   Geometry of the 3-D numerical model 

 

The fluid to be used is air. Therefore fluid flow will depend only on the temperature difference given as   ∆T=
𝑇ℎ − 𝑇𝑤. Aspect ratio A=H/L=0.5, Where H is the height and L is the Length of the enclosure. The characteristic 

length is taken to be the size of the enclosure in the 𝑥 − direction. Furthermore, the Boussinesq Approximation 

(1903) is assumed and is presented below. 

 

The cell distribution within the flow domain is optimized, whereby the cells are made finer in areas where large 

variations or gradients occur from point to point and coarser in regions with relatively small variations in the 

solved variables. 

 

III. GOVERNING EQUATIONS 
The equations governing the flow of incompressible Newtonian fluid are derived from equations, which enforce 

the conservation of mass, the conservation of momentum, and conservation of energy. The equation of continuity, 

the momentum equation and the energy equation are given as equations (3.1), (3.2) and (3.3) below respectively: 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌𝑢𝑗) = 0                                                                                                                                  (3.1) 

𝜕

𝜕𝑡
𝜌𝑢𝑗 +

𝜕

𝜕𝑥𝑗

𝜌𝑢𝑖𝑢𝑗 = −
𝜕𝑃

𝜕𝑥𝑖

+ 𝜌𝑔𝑖 +
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘

]                                    (3.2) 

 

Where 𝜇 and 𝜇𝑠 are the first and second coefficient of viscosity. 

𝜕

𝜕𝑡
(𝐶𝑃𝜌𝑇) +

𝜕

𝜕𝑥𝑗

(𝐶𝑃𝜌𝑢𝑗𝑇) =
𝜕

𝜕𝑥𝑗

(𝜆
𝜕𝑇

𝜕𝑥𝑗

) + 𝛽𝑇 (
𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑗𝑝

𝜕𝑥𝑗

) + Φ                                                                    (3.3) 

 

IV. TURBULENCE MODELING 
 

Reynolds Decomposition 

The concept entails decomposing the instantaneous fluid flow quantities (variables) in the Navier-Stokes 

equations into mean (time-averaged) value and fluctuating value.  

 

 

Instantaneous Equations of Motion   

http://www.ijesrt.com/
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A turbulent flow instantaneously satisfies the Navier-Stokes equations and the equations of motion for the 

instantaneous variables are; 

 
𝜕�̃�

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(�̃��̃�𝑗) = 0                                                                                                                               (4.1) 

 

𝜕

𝜕𝑡
�̃��̃�𝑗 +

𝜕

𝜕𝑥𝑗

�̃��̃�𝑖�̃�𝑗 = −
𝜕�̃�

𝜕𝑥𝑖

+ �̃�𝑔𝑖 +
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕�̃�𝑖

𝜕𝑥𝑗

+
𝜕�̃�𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗𝜌
𝜕�̃�𝑘

𝜕𝑥𝑘

]                               (4.2) 

 

 

𝜕

𝜕𝑡
(�̃�𝑃�̃��̃�) +

𝜕

𝜕𝑥𝑗

(�̃�𝑃�̃�𝑈𝑗�̃�) =
𝜕

𝜕𝑥𝑗

(𝜆
𝜕�̃�

𝜕𝑥𝑗

) + 𝛽𝑇 (
𝜕𝑝

𝜕𝑡
+

𝜕�̃�𝑗𝑝

𝜕𝑥𝑗

) + Φ                                        (4.3) 

 

The equations satisfied by the mean flow are obtained by   substituting the Reynolds decomposition into the 

instantaneous Navier-Stokes equations and taking the average of the equations       

 

Averaged Equations of Motion 

a) Continuity equation for Turbulent flow   

 Decomposing the instantaneous differential form of the continuity equation (4.2) into its mean and turbulent part, 

taking the time average and simplifying yields; 
𝜕�̅�

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(�̅��̅�𝑗 + 𝜌′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) = 0                                                                                                                    (4.4) 

 

b) Momentum Equation for Turbulent Flow   

Decomposing the instantaneous dependent variables of the momentum equation, taking the average, expanding 

and then simplifying this equation yields:- 

𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕(�̅�𝑖 + 𝑢𝑖

′)

𝜕𝑥𝑗

+
(�̅�𝑗 + 𝑢𝑗

′)

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗𝜌
𝜕(�̅�𝑘 + 𝑢𝑘

′ )

𝜕𝑥𝑘

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕�̅�𝑖

𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗

𝜕�̅�𝑘

𝜕𝑥𝑘

]                                                                         (4.5) 

  

The correlation 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ in equation (4.5) is generally nonzero. 

(a)  Mean Heat Equation 

Decomposing the instantaneous temperature variable in the heat equation into the mean part and the deviation 

from the mean, and simplifying this equation yields;  

                     
𝜕

𝜕𝑡
(𝐶𝑃�̅��̅� + 𝐶𝑃𝜌′𝑇′̅̅ ̅̅ ̅) +

𝜕

𝜕𝑥𝑗

(𝐶𝑃𝜌𝑢𝑗̅̅ ̅̅̅�̅�)

=
𝜕�̅�

𝜕𝑡
+

𝜕�̅�

𝜕𝑥𝑗

+ 𝑢′𝑖

𝜕𝑝′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
+

𝜕

𝜕𝑥𝑗

(𝜆
𝜕�̅�

𝜕𝑥𝑗

− 𝐶𝑃�̅�𝑢′
𝑖𝑇

′̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑃𝜌′𝑢𝑖𝑇
′̅̅ ̅̅ ̅̅ ̅̅ ) + Φ̅                 (4.6) 

 

Where;  

Φ̅ = 𝜏𝑖𝑗̅̅ ̅
𝜕𝑢�̅�

𝜕𝑥𝑗

+ 𝜏′𝑖𝑗

𝜕𝑢′𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                                                                                          (4.7) 

 

V. NON-DIMENSIONALISATION 
This implies the partial or full removal of units from an equation involving physical quantities by a suitable 

substitution of variables. This technique can simplify and parametize problems where measured units are 

involved. Hence equations (4.4), (4.5), (4.6) and the two 𝑘 − 𝜔 𝑆𝑆𝑇 model equations take the form 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖 + 𝜌𝑢𝑗̅̅ ̅̅ ̅)                                                                                                                            (5.1)  

http://www.ijesrt.com/
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𝜕

𝜕𝑡
(𝜌𝑈𝑖 + 𝜌𝑢𝑖̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖𝑈𝑗 + 𝑈𝑖𝜌𝑢𝑗̅̅ ̅̅ ̅) = −𝑁1

𝜕𝑃

𝜕𝑥𝑖

+ 𝑁2𝑝𝑔𝑖 +
𝜕

𝜕𝑥𝑗

(𝑁3𝜏𝑖𝑗 − 𝑈𝑖𝜌𝑢𝑖̅̅ ̅̅ − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅)

= 0                  (5.2) 

 
𝜕

𝜕𝑡
(𝑐𝑃𝜌Θ + 𝑐𝑃𝜌Θ̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑗

(𝑐𝑃𝜌𝑈𝑗Θ̅̅ ̅̅ ̅̅ ̅)

= 𝐿1 [
𝜕𝑝

𝜕𝑡
+ 𝑈𝑗

𝜕𝑝

𝜕𝑥𝑗

+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅
] +

𝜕

𝜕𝑥𝑗

(𝐿2𝜆
𝜕Θ

𝜕𝑥𝑗

− 𝑐𝑃𝜌Θ̅̅ ̅̅ + 𝑐𝑃𝜌Θ)

+ 𝐿3∅                                                                                                                                                                    (5.3) 
 

𝜕

𝜕𝑡
𝜌𝑘 +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖𝑘) = 𝐴1𝑢𝑗

𝜕𝜇

𝜕𝑥𝑗

(
̅̅ ̅̅ ̅̅ ̅̅ ̅𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) −
1

2

𝜕

𝜕𝑥𝑗

𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅
𝜕𝑈𝑖

𝜕𝑈𝑗

+ 𝐵2𝜌𝑢𝑖̅̅ ̅̅̅𝑔𝑖 − 𝐵3𝑢𝑗

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅
                         (5.4) 

 
𝜕

𝜕𝑡
𝜌𝜔 +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑗𝜔)

= −
𝜕

𝜕𝑥𝑘

(𝐵1𝜇𝑢𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 2𝐵2𝜈

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝜌

𝜕𝑥𝑖

− 𝐵1𝜇
𝜕𝜔

𝜕𝑥𝑘

) − 2𝐵1𝜇
𝜕𝑈𝑖

𝜕𝑥𝑗

(
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑘

)

− 2𝐵1𝜇
𝜕2𝑈𝑖

𝜕𝑥𝑗𝜕𝑥𝑘

𝜇𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
                                               (5.5) 

 

VI. METHOD OF SOLUTION 
 

Introduction 

After the conservation laws governing heat transfer, fluid flow and other related processes are expressed in 

differential form and modeled inform of temperature and velocity, they can be solved using numerical methods, 

rather than analytical methods, to determine pressure, temperature, mass flux, etc. for various situations and 

boundary conditions.   

 

Discretization of the Solution Domain using FVM 

The process of space discretization involves dividing the computational domain into a finite number of contagious 

control volumes, where the resulting statements express the exact conservation of relevant properties for each 

control volumes. At the centroid of each control volumes, the variable values are calculated. Interpolation is used 

to express variable values at the control volume surface in terms of the center values and suitable quadrature 

formulae are applied to approximate the surface and volume integrals.  

 

 
Fig. 6.1 Control-volume element 

 

http://www.ijesrt.com/
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Figure 6.1, above shows a typical two-dimensional mesh. Finite Volume Method was preferred to Finite 

Difference Method for the following reasons: 

i) Spatial discretization is totally flexible. This type of unstructured mesh offers greater flexibility in 

order to accommodate irregularly shaped boundaries. Hence you can handle complex geometries, 

reduce geometric errors and give more resolutions in regions of interest  

ii) FVM naturally conserves variables when applied to PDEs expressing conservation laws since, as 

two neighboring cells share a common interface, the total flow of a conserved quantity out of one 

cell will be the same as that entering the other cell. As a result, mass, momentum and energy are 

conserved even on coarse grids. 

iii) This method requires no transformation of equations in terms of body-fitted coordinate system as is 

required in Finite-Difference Method. 

iv) FVM enjoys an advantage in memory use and speed for higher speed flows and turbulent flows. 

 

Variable Arrangement on the Grid 

Before describing the discretization scheme, choice of arrangement on the grid requires some consideration. 

Instead of a collocated grid, we used a staggered grid arrangement for this thesis computation in order to evaluate 

the velocity components at the control volume faces while the rest of the variables governing the flow field, such 

as the pressure, temperature, and turbulent quantities, are stored at the central node of the control volumes. A 

typical arrangement is depicted in figure 6.2, which is in 2-D, for convenience. 

 

 
Fig. 6.2 control volumes in 2D. 

 

It can be demonstrated that the discrete values of the velocity components, 𝑢, from the 𝑥 −momentum equation 

are evaluated and stored at the east, 𝑒, and the west, 𝑤, faces of the control volume. By evaluating the other 

velocity components using the 𝑦 −momentum and 𝑧 −momentum equations on the rest of the control volume 

faces, these velocities allow a straightforward evaluation of the mass fluxes that are used in the pressure correction 

equation. This arrangement therefore provides a strong coupling between the velocities and pressure, which helps 

to avoid some types of convergence problems and oscillations in the pressure and velocity fields. 

 

Discretization of the Governing Equations Using FVM 

The process of discretization of the governing equations involved developing a set of algebraic equations (based 

on discrete points in the flow domain) to be used in the place of the partial differential equations.  

 

An algebraic equation for each of the control volumes can be obtained, in which a number of the neighboring 

nodal values appear. 

 

Discretization of the Continuity Equation by FVM 

Consider the continuity equation (3.1) in two dimensional form of figure 6.2. Integrating over the cell P and 

applying Gauss’ divergence theorem to the volume integral, we get; 

1

Δ𝑉
∫ ∇. 𝑈𝑑𝑉

𝑉

=
1

Δ𝑉
∫ 𝑈𝑑𝐴

𝐴

                                                                                                              (6.1) 

http://www.ijesrt.com/
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Assuming that the velocity variable on the face is represented by its centroid value, we may write; 

1

Δ𝑉
∫ 𝑈𝑑𝐴

𝐴

=
1

Δ𝑉
∑ 𝑈𝑖𝐴𝑖  

𝑖

                                                                                                                    (6.2) 

 

For a first-order derivative of 𝑈 in two dimensions, the term along the 𝑥 direction represented in equation (3.1), 

can be approximated by;  

(
𝜕𝑢

𝜕𝑥
) =

1

Δ𝑉
∫

𝜕𝑢

𝜕𝑥
𝑑𝑉

𝑉

=
1

Δ𝑉
∫ 𝑢𝑑𝐴𝑥

𝐴

≈
1

Δ𝑉
∑ 𝑢𝑖𝐴𝑖

𝑥

𝑁

𝑖=1

                                                                   (6.3) 

 

Where 𝑢𝑖 the velocity variable values at the elemental surfaces and N denotes the number of bounding surfaces 

on the elemental volume. For a quadrilateral element in 2-D for the structured mesh as seen in figure 6.2, N has 

the value of four since there are four bounding surfaces of the element. In 3-D, for a hexagonal element, N becomes 

six. Similarly, the first-order derivative for 𝑈 in the 𝑦 direction is obtained in the same fashion, which can be 

written as;  

 

(
𝜕𝑣

𝜕𝑦
) =

1

Δ𝑉
∫

𝜕𝑣

𝜕𝑦
𝑑𝑉

Δ𝑉

=
1

Δ𝑉
∫ 𝑣𝑑𝐴𝑦

𝐴

≈
1

Δ𝑉
∑ 𝑣𝑖𝐴𝑖

𝑦

𝑁

𝑖=1

                                                                   (6.4) 

 

It follows from equation (6.2) that the first order derivative for 𝑈 in the 𝑧 direction can be written as; 

(
𝜕𝑤

𝜕𝑦
) =

1

Δ𝑉
∫

𝜕𝑤

𝜕𝑦
𝑑𝑉

Δ𝑉

=
1

Δ𝑉
∫ 𝑤𝑑𝐴𝑧

𝐴

≈
1

Δ𝑉
∑ 𝑤𝑖𝐴𝑖

𝑧

𝑁

𝑖=1

                                                                (6.5) 

 

For our considered mesh (orthogonal) in figure 6.2, using equations (6.2), (6.3) and (6.4), we get; 

(𝑢𝑒 − 𝑢𝑤)∆𝑦 + (𝑣𝑛 − 𝑣𝑠)∆𝑥 = 0                                                                                                         (6.6)  
 

In 3-D, equation (6.6) becomes;  

 [(𝜌𝑢)𝑒 − (𝜌𝑢)𝑤]∆𝑦∆𝑧 + [(𝜌𝑣)𝑛 − (𝜌𝑣)𝑠]∆𝑧∆𝑥 + [(𝜌𝑤)𝑡 − (𝜌𝑤)𝑏]∆𝑥∆𝑦 = 0                     (6.7)  

 

Discretization of the Momentum Equation by FVM 

Consider the 2-D rectangular domain shown in figure 6.2. Assume that; 

(i) the velocity vector U and the pressure P are stored at the cell centroids 

(ii) a steady state 

 

The momentum equation in equation (3.2) in 𝑥 and 𝑦 may be written as;  

∇. (𝜌𝑉𝑢) = ∇. (𝜇∇𝑢) − ∇𝑃. 𝑖 +  𝑆𝑢                                                                                                       (6.8) 

∇. (𝜌𝑉𝑣) = ∇. (𝜇∇𝑢) − ∇𝑃. 𝑖 +  𝑆𝑣                                                                                                         (6.9) 

 

Each of the momentum equations contains a pressure gradient term, a source term (𝑆𝑢 and 𝑆𝑣) which contains the 

force term, as well as remnants of the stress tensor term. 
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Fig. 6.3  The Staggered Grid      

𝝏𝒑

𝝏𝒙
=

𝑷𝑬−𝑷𝑷

(𝝏𝒙)𝒆

𝝏𝒑

𝝏𝒚
=

𝑷𝑵−𝑷𝑷

(𝝏𝒚)𝒏
 

 

Using the staggered grid for the velocity components as in figure 6.3, as used by Harlow and Welch (1965) in 

their MAC method, the resulting discretized momentum equation, in the 𝑥 −direction, can be written;  

𝑎𝑒𝑢𝑒 = ∑ 𝑎𝑛𝑏𝑢𝑛𝑏 + 𝑏 + (𝑃𝑃 − 𝑃𝐸)𝐴𝑒                                                                                            (6.10) 

 

where 𝑎𝑒 is the coefficient for the main grid point, 𝑎𝑛𝑏 are the neighbor coefficients that account for the combined 

convection-diffusion at the control-volume faces. Here P is the main grid point. The staggering is in the 𝑥 direction 

only, such that the faces normal to that direction pass through the main grid points 𝑃 and 𝐸,  𝑏 = 𝑆𝑐∆𝑥∆𝑦 + 𝑎𝑃
𝑜∅𝑃

𝑜   

in which 𝑆𝑐 is the source term quantity; The term (𝑃𝑃 − 𝑃𝐸)𝐴𝑒 is the pressure force acting on the 𝑢 control volume, 

𝐴𝑒 being the area which the pressure difference acts. For three-dimensional case,  𝐴𝑒 will stand for ∆𝑦∆𝑧. 
 

The momentum equation for the 𝑦 −direction momentum equation is staggered in the 𝑦 −direction. Hence the 

discretization equation for 𝑣𝑛 is given as; 

𝑎𝑛𝑣𝑛 = ∑ 𝑎𝑛𝑏𝑣𝑛𝑏 + 𝑏 + (𝑃𝑃 − 𝑃𝑁)𝐴𝑛                                                                                            (6.11) 

 

Similarly, the 𝑧 −direction momentum equation is staggered in the 𝑧 −direction and given as; 

𝑎𝑛𝑤𝑡 = ∑ 𝑎𝑛𝑏𝑤𝑛𝑏 + 𝑏 + (𝑃𝑃 − 𝑃𝑡)𝐴𝑡                                                                                            (6.12) 

Where;  

(𝑃𝑃 − 𝑃𝑡)𝐴𝑡 is the pressure force acting on the 𝑤 control volume, where 𝐴𝑡 is the area which the pressure 

difference acts.  

 

The momentum equations (6.10), (6.11) and (6.12) can be solved using the following discretized velocity and 

pressure correction equations, after making an initial guess for the pressure field; 

𝑢𝑒 = 𝑢𝑒
∗ + 𝑑𝑒(𝑝𝑃

′ − 𝑝𝐸
′ )                                                                                                                        (6.13) 

𝑣𝑛 = 𝑣𝑛
∗ + 𝑑𝑛(𝑝𝑃

′ −  𝑝𝑁
′ )                                                                                                                     (6.14)  

𝑤𝑡 = 𝑤𝑡
∗ + 𝑑𝑡(𝑝𝑃

′ − 𝑝𝑇
′ )                                                                                                                        (6.15)   

𝑎𝑃𝑝𝑃
′ = 𝑎𝐸𝑝𝐸

′ + 𝑎𝑊𝑝𝑊
′ + 𝑎𝑁𝑝𝑁

′ + 𝑎𝑆𝑝𝑆
′ + 𝑎𝑇𝑝𝑇

′ + 𝑎𝐵𝑝𝐵
′ + 𝑏                                                      (6.16)             

Where 𝑢∗, 𝑣∗ and 𝑤∗are imperfect velocity fields based on the guessed pressure field 𝑝∗ and 𝑢′, 𝑣′, 𝑤′, 𝑝′are 

velocity and pressure correction factors. 

Main Control Volume  u-Contol Volume v-Control Volume 
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𝑑𝑒 = 𝑑𝑛 = 𝑑𝑡 ≡
𝐴𝑒

𝑎𝑒

                                                                                                                               (6.17) 

 

 

Where; 

𝑎𝐸 = 𝜌𝑒𝑑𝑒∆𝑦∆𝑧 

𝑎𝑊 = 𝜌𝑤𝑑𝑤∆𝑦∆𝑧 

𝑎𝑁 = 𝜌𝑛𝑑𝑛∆𝑧∆𝑥 

𝑎𝑆 = 𝜌𝑠𝑑𝑠∆𝑧∆𝑥 

𝑎𝑇 = 𝜌𝑡𝑑𝑡∆𝑥∆𝑦 
                                                                                                 𝑎𝐵 = 𝜌𝑏𝑑𝑏∆𝑥∆𝑦                                                            (6.18) 
                                                                                 𝑎𝑃 = 𝑎𝐸+𝑎𝑤+𝑎𝑁+𝑎𝑆+𝑎𝑇+𝑎𝑆

 

 

𝑏 =
(𝜌𝑃

0 − 𝜌𝑃)∆𝑥∆𝑦∆𝑧

∆𝑡
+ [(𝜌𝑢∗)𝑤 − (𝜌𝑢∗)𝑒]∆𝑦∆𝑧 + [(𝜌𝑣∗)𝑠 −                                                        

(𝜌𝑣∗)𝑛]∆𝑧∆𝑥 + [(𝜌𝑤∗)𝑏 − (𝜌𝑤)𝑡]∆𝑥∆𝑦                                                                                                            

 

 

We have hence formulated all the equations needed for obtaining the velocity components and pressure. The 

application of SIMPLEC algorithm, to solve equations (6.13), (6.14), (6.15) and (6.16) is discussed in section 

(6.6). 

 

VII. RESULTS AND DISCUSSION 
The results presented here were obtained by solving equations (6.13), (6.14), (6.15) and (6.16) numerically using 

the staggered grid and finite volume method; and together with the boundary conditions given at section (2). The 

numerical results we have found were, validated against the benchmark data provided Sanjurjo and Cooper (1991) 

and by Ampofo) and Karayiannis (2003), at a Rayleigh number of 1.58 × 109. 

 

Grid Convergence 
  

 
Fig 7.1 grid 80x80 

 

The grid shown in figure 7.1 above is the standard grid used in these validations. The computational grids are 

staggered and clustered towards the walls. Grids are staggered so that the scalar variables like pressure, 

temperature, density and turbulent quantities are stored in the cell centres of the control volume whereas vector 
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variables like velocity and momentum are located in the cell faces. This would provide a strong coupling between 

velocities and pressure. Hence the odd-even decoupling, a discretization error that would lead to checker-board 

patterns in the solution, leading to convergence issues is sorted out. Grids are clustered towards the wall because, 

the flow in turbulent natural convection in an enclosure is characterized by a thin boundary layer along the walls 

while the core is thermally stratified. The flow gradient are very large in the boundary layer and require a large 

number of computational grids, in which the values of dependent variables should be determined in order to 

capture the flow physics, hence the adaptive refinement towards the isothermal walls which is our region of 

interest. All variables are calculated right up to the walls without using any wall function since the 𝑘 − 𝜔 𝑆𝑆𝑇 

model would use its blending function to switch the model to the 𝑘 − 𝜔 model which is more accurate and more 

numerically stable in the near wall regions. On the wall surface, the boundary values for the velocity components 

and the turbulent kinetic energy are set to zero in conformity with no slip boundary condition. 

 

 
Fig 7.2    Mass imbalance profiles on an 80x80 grid 

 

The dimensionless temperature of the cold and hot walls are 0 and 1 respectively.  

For a numerical method to bear a stable discretization equation solution / a grid independent solution; 

i) The solved variables at all discrete cell locations should not change significantly with 

further grid refinement/ as the grid density increases. 

ii) The computational domain should be devoid of distorted cells (long thin cells) because 

grid cell distortion leads to a poorly converged solution. 

 

This outlines the importance of carrying out a mesh convergence test using a grid checker. This we did by carrying 

out a grid independence test. This was done by computing the numerical solution on successively finer grids. The 

difference in numerical solution between the coarse (80x80) and finer (160x160) grid, was to be taken as the 

accuracy measure of the coarse grid. 

 

In this case, the 80x80 grid was refined by increasing the number of grid points to 160x160 for confirmation of 

grid independence. Figures 7.1 and 7.2 show a comparison of the residual mass imbalance profiles for the flow 

generated on each of the grids.  The numerical implication is that as the mesh spacing or control volume size 

approached zero, the discretized equation solution matches the exact solution. 

 

 

Initially we did a test run using a coarse mesh. This had the following advantages 

i) It gave us the opportunity to evaluate the computers storage and running time. 

ii) By this way, it was possible to assess the convergence and divergence behavior 

of the solutions 
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iii) The test run provided us with means of rectifying possible sources of solution 

errors such as physical modelling or human errors. 

 

 
Fig 7.3 Mass imbalance grid on a 160x160 grid 

 

Evidently, the results obtained on the 80x80 grid do not differ from those obtained on the 160x160 grid layout. 

Therefore, we can conclude the discretization error has diminished to zero and the grid independence has been 

reached. 

Through the grid independence test we established that; 

i. The discretization equation results do not depend on profile assumption. 

ii. We have reduced computational cost by finding an optimum grid size of the control  volume, without 

compromising with the accuracy of the solution 

 

VIII. CONCLUSION 
i) From the numerical data, the numerical method produced a solution which approached the exact solution 

by Ampofo and Karayiannis (2003) as the grid spacing reduced to zero. Further, the method is stable and 

consistent as evidenced by the damping errors as the numerical method proceeded and the similarity of 

this flow to that observed in the experimental results by Sanjurjo and Cooper (1991). Therefore using 

Lax's equivalence theorem, Lax and Richtmyer (1956), this code is valid, stable and consistent.       
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                Fig 8 (a) Velocity vectors at Y=0.1 and Y=0.9                  (b) Velocity vectors at Y=0.5 

 

ii) In this paper, an efficient procedure for solving a turbulent natural convection problem has been 

developed by use of an optimized staggered grid and the flow domain is discretized by use of Finite 

Volume Method. Its efficiency is illustrated by applying it to the problem of turbulent natural convection 

in an enclosure, heated on the hot wall and cooled on the cold wall. 

iii) By use of the Finite Volume Method, the flow domain was properly discretized with an appropriate grid 

distribution. The accuracy of a solution and its associated cost due to computing time and hardware were 

dependent in part on the grid density. Some cost savings was achieved by optimizing and staggering the 

grid. 
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